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Introduction 

 In this informal paper I want to present a few techniques that can be used to find the 

solutions to quadratic equations. These techniques are only useful for quadratics that have real 

coefficients (no complex coefficients).  

 The techniques presented in this paper require a knowledge of the Lill’s method for 

representing polynomial equations. If you want to familiarize yourself with Lill’s method, I 

recommend this paper (external website) and my paper “Lill’s Method and the Sum of 

Arctangents”. The techniques presented here were already discovered by other people. 

Nonetheless, in this paper I want to present most of the useful techniques that I know. After I 

introduce the techniques I will show an interesting property of complex solutions to quadratic 

equations. 

The Golden Quadratic Equation 

 To make the presentation more interesting, I will use a special quadratic equation as an 

example. The equation is G(x)=x2 -x -1. This quadratic equation has the roots 

x1=φ( 𝑔𝑜𝑙𝑑𝑒𝑛 𝑟𝑎𝑡𝑖𝑜) ≈ 1.618033 and x2= - Φ (negative reciprocal of golden ratio) ≈

 −0.618033 . I use this quadratic equation because I assume that everybody likes the golden 

ratio. In Image 1 you can see the Lill representation of G(x). P0P1 represents the coefficient a2= 

1, P1P2 represents the coefficient a1= -1 and the segment P2P3 represents the segment a0= -1.  The 

formula I use to obtain the Lill representation is: ake
i(n-k)π/2, where ak is the coefficient 

corresponding to the segment, i is the imaginary number and 0≤ 𝑘 ≤ 𝑛. This is not the only valid 

way of representing a polynomial using Lill’s method, but it is the one that I prefer. 

 

http://ethw.org/w/images/5/58/PVB_geometric-solutions-of-alebraic-equations.pdf
http://raulprisacariu.com/papers/Lill_arctangents.pdf
http://raulprisacariu.com/papers/Lill_arctangents.pdf


Image 1 

 Now that we have the basic Lill representation, I will present 2 techniques for solving P(x) in a 

graphical manner.  In this case, I will provide 2 ways of constructing the golden ratio. This should be a 

bonus for the fans of the golden ratio. 

Carlyle Circle/Lill Circle 

 The first method makes use of the Carlyle Cicle or the Lill Circle. The Carlyle Circle was 

discovered by Thomas Carlyle way before Eduard Lill developed his method of representing 

polynomial equations. The Carlyle circle was introduced by John Leslie (who was a professor of 

Carlyle) in his book “Elements of geometry and plane trigonometry” starting at page 176. The 

Carlyle Circle can easily be adapted to the Lill representation of a second degree polynomial. For 

convenience, I will use the term Lil circle.  

 For any Lill representation of a second degree polynomial P(x), the center of the Lill 

circle is located at the midpoint C of the segment P0P3 and the radius r = P0C = CP3. If P(x) has 

real roots, the Lill circle will intersect the extended line that passes though P1 and P2 at the point 

or points that give the solution to the quadratic equation. In Image 2 you can see the solution for 

G(x). You can see that the circle C intersects the line that passes through P1 and P2 at X1 and X2. 

You can also see that the length of segments P1X1 and P1X2 give the absolute values of the roots 

x1 and x2.  

 

Image 2 

https://archive.org/details/elementsgeometr05leslgoog


 If you read my paper for which I provided a link at the beginning of this paper, you 

should know how to determine the sign of a root. You should also know that a2 acts as a scaling 

factor. In the case of G(x), a2 = 1, so no scaling was necessary. But if we suppose that a2 is 

different than 1 (but not 0), then the values of the roots would have been equal to P1X1/a2 and 

P1X2/a2.   

Pappus method for solving quadratics  

 This is another method presented in John Leslie’s book on geometry. This method was 

presented starting with the page 340 and it was a note to the Carlyle circle method. This 

construction was supposedly developed by the ancient mathematician Pappus. This method 

requires you to find the midpoint A of P1P2. Then you make a circle with the center at A and the 

radius equal to AP1 = AP2. Then construct the segment P0P3. If the polynomial P(x) has real 

roots, the circle A should intersect P0P3 at 1 or 2 points, say B and C. From B and C, you must 

construct the perpendicular lines to the segment P0P3. The solutions should be at the intersection 

of the perpendiculars to P0P3 and the extended line that passes though P1 and P2.  

 In Image 3, you can see that the perpendicular line to P0P3 at C, meets the extended line 

that passes though P1 and P2 at X1. Similarly, the perpendicular at C, intersects the extended line 

at X2. This should be an interesting method for constructing the golden ratio. 

  

Image 3 

 



 

Quadratics with complex roots 

 Now we want to see how to solve quadratics that have complex roots. As an example, I 

will use C(x) = x2 – 2x + 5, with x1 = 1 + 2i and x2 = 1 -2i. What happens if we draw a Lill 

circle? In Image 4 we can see that the Lill circle doesn’t intersect the extended line passing 

though the points P1 and P2. We can also try the Pappus method, but again will fail to get the 

required intersections. So, we need a new method. 

 

Image 4 

 The method for finding complex roots is a bit more complex. The first step is to construct 

the midpoint A of the segment P1P2. Then we shall construct a line that is perpendicular to P1P2 

at the point A. Next, we will construct the segment P2B = abs(a1), with P2B having the opposite 

direction of P2P3. Now, we construct the midpoint M of the segment BP3. Next, we construct the 

circle with the center at M and radius r = MB = MP3. The circle M should intersect the extended 

line that passes through P1 and P2 at 2 points. Pick one of the points and call it D. Now construct 

the circle with the center at P2 and the radius r = P2D. The circle with center P2 and radius P2D 

should intersect the perpendicular line that passes though A at the points X1 and X2 that give the 

solutions to the polynomial equation with complex roots. AP1/a1 gives the real value of the roots, 

while X1A/a1 and X2A/a1 give the complex values of the roots.      



 Image 5 shows the graphical solution for C(x). In this case, a1 = 1, so we don’t need to 

scale the solutions. AP1 has the length 1, and it gives the real part of x1 and x2. The lengths of 

X1A and X2A are both equal to 2. So, the points X1 and X2 are the geometric interpretations of x1 

and x2.   

 

Image 5 

Complex Roots and the Lill Circle Inversion Property 

 Even though the Lill circle was not useful for finding the complex roots, the Lill circle 

seems to be connected to the solution points. The property can be defined in the following way: 

Let P(x) be a 2nd degree polynomial with real coefficients and with 2 complex roots. The Lill 

solutions points X1 and X2 that represent the roots x1 and x2, are in an inverse relationship with 

respect to the Lill circle. The only exception occurs when x1 = i and x2 = -i.  

 In our case the center of the Lill circle is C and the radius is r = P0C = CP3. If X1 is the 

inverse of X2 with respect to the Lill circle, then CX1 * CX2 = r2 and the points C, X1 and X2 are 

collinear (on the same line). In Image 6 I included additional calculations that show that indeed 

X1 is the inverse of X2.  



 

Image 6 

 I want to add that to my knowledge, this property is not mentioned anywhere else. Maybe 

in a future paper I will try to show a rigorous proof, which is beyond the scope of this paper.  

Final Notes 

 While doing more research for this paper, I found a method that uses the Lill circle to 

obtain the complex solutions. The method is found in the paper “83.55 The Complex Roots of a 

Quadratic from a Circle” by Ladislav Beran. I also recommend the paper “Carlyle Circles and 

the Lemoine Simplicity of Polygon Constructions” by Duane W. DeTemple. This link discusses 

2 methods explained in this paper. For more resources to study Lill’s method, you can look on 

my website at the papers section  or this Lill resources page. 

 I wanted to keep this informal paper short, so I avoided proofs or extended explanations. 

Nonetheless, I hope that I described the methods in a manner that is easy to understand. I also 

tried to provide many additional resources for people interested in Lill’s method. One of my 

intentions is to show the beauty and usefulness of Lill’s method.  

http://www.jstor.org/stable/3619064?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/3619064?seq=1#page_scan_tab_contents
https://web.archive.org/web/20151221113614/http:/apollonius.math.nthu.edu.tw/d1/ne01/jyt/linkjstor/regular/1.pdf#3
https://web.archive.org/web/20151221113614/http:/apollonius.math.nthu.edu.tw/d1/ne01/jyt/linkjstor/regular/1.pdf#3
https://web.archive.org/web/20100502013959/http:/www.concentric.net/~pvb/ALG/rightpaths.html
http://raulprisacariu.com/papers.html
http://raulprisacariu.com/misc/lill_method.html

