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Abstract 

 In this paper we show how to represent polynomial equations with complex coefficients 

using Lill’s method. We also discuss a few general properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 Lill’s method is a remarkable visual method that can be used to represent and solve 

polynomial equations. Lill’s method was developed in the 19th century by the Austrian engineer 

Eduard Lill. All the papers that discussed Lill’s method since the time of Lill himself, only dealt 

with polynomial equations with real coefficients. Eduard Lill showed in his second paper [1] 

how to represent the roots that have imaginary parts, but to our knowledge there is no paper that 

shows how to represent polynomials with complex coefficients using Lill’s method. The primary 

goal of this paper is to show that Lill’s method can be used to represent polynomials with 

complex coefficients.   

 After we show how to deal with polynomials with complex coefficients, we discuss in 

some detail three important general properties. Two of the general properties were discussed in 

other papers. However, our extension of Lill’s method gives us a better understanding of one of 

the properties. The third property discussed in this paper is to our knowledge not treated in other 

papers dealing with Lill’s method.      

 At the end of this paper we discuss a few reasons why Lill’s method deserves to be 

known by a larger audience. We also mention a few reasons why Lill’s method may prove to be 

a useful educational tool.  

Graphing Polynomials with Real coefficients 

 Before we talk about polynomials with complex coefficients, it would be more 

convenient to discuss the polynomials with real coefficients. There are a few ways of 

representing a polynomial using Lill’s method, but we use a method very similar to the one 

described in paper [2].  



 So let us have the general polynomial of order n, P(z)=anz
n+an-1z

n-1+…+a1z+a0, where the 

coefficients {an, an-1, … , a1, a0} are real numbers. In Lill’s method the polynomial P(z) can be 

represented by a path of connected vectors P0 P1 P2… Pn Pn+1, where 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a vector 

corresponding to an-k, where 0≤ 𝑘 ≤ 𝑛. For convenience, we let P0 to be located at (0,0). Since 

P0 has a fixed location, we always start by graphing the vector 𝑃0𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   that corresponds to an. The 

length and the direction of the vector 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   that corresponds to the coefficient an-k is obtained 

with the following equation: 

(an-k)e
i(k)π/2  , for 0≤ 𝑘 ≤ 𝑛.                                     (1) 

 The vector 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   that corresponds to the coefficient an-k is a vector with the initial point 

Pk and the terminal point Pk+1. To make sense of the values given by (1), we must establish some 

rules. If the value of equation (1) is a positive real number, then the point Pk+1 should be located 

to the right of Pk. If the value is a negative real number, then Pk+1 is located directly to the left of 

Pk. If (1) yields a positive complex number, then Pk+1 is directly above Pn-k. Finally, if (1) yields a 

negative complex number, then Pk+1 is directly below Pk. In all the cases the length of the vector 

𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is equal to the absolute value of the coefficient an-k. For convenience we can call the 

value given by equation (1) the vector value.  

 To make matters more concrete, we can graph the polynomial P(z)= 2z2 + 2z -4, that has 

a2 = 2, a1 = 2, a0 = -4 and n = 2. First, we let P0 to be located at (0,0).  The direction of 𝑃0𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

corresponding to the coefficient a2-0 = a2 = 2 is given by the equation (2)ei(0)π/2 = (2)e0 = 2. Since 

the vector value is a positive real number, we know that P1 is 2 units to the right of P0. Thus, the 

coordinates of P1 are (2,0). The direction for 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    that corresponds to a2-1 = a1 = 2 is given by 

(2)ei(1)π/2 = (2)eiπ/2  = 2i. Since we have a positive complex number, P2 should be located 2 units 

above P1 at the coordinates (2,2).   Finally, for a0 we have the vector 𝑃2𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    with the direction      



(-4)ei(2)π/2  = (-4) eiπ =  4. Thus, P3 should be 4 units to the right of P2, at the coordinates (6,2). 

Figure 1 shows the Lill representation of the polynomial.  

 

Figure 1 

Equation (1) is not the only way to obtain the direction of vectors 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  We can use a 

few rules of thumb. Starting with 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , the direction of 𝑃𝑘𝑃𝑘+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is 90 degrees counterclockwise 

with respect to 𝑃𝑘−1𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  if an-k and an-k-1 have the same sign. If an-k and an-k-1 have different signs, 

then the direction of  𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is 90 degrees clockwise with respect to 𝑃𝑘−1𝑃𝑘

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . In our example a1 

has the same sign as a2, so the direction of 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    is 90 degrees counterclockwise with respect to 

𝑃0𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . a0 and a1 have different signs, so the direction of 𝑃2𝑃3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , is 90 degrees clockwise with respect 

to 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,.  

Graphing Polynomials with Complex Coefficients 

 Now that we understand how to graph polynomials with real coefficients, we can discuss 

the polynomials with complex coefficients.  For polynomials with complex coefficients, the 



vector value of the vector 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   that corresponds to the coefficient an-k is obtained with the 

following equation: 

Re(an-k)e
i(k)π/2 + Im(an-k)e

i(k+1)π/2, where 0≤ 𝑘 ≤ 𝑛 and i is the imaginary number (2) 

 It is easy to see that equation (2) is similar to equation (1). The big difference is that the 

equation (2) has two components. The first component gives the direction of the vector 

component that corresponds to the real component of an-k and the second component gives the 

direction of the vector component that corresponds to the imaginary part of an-k. Re(an-k) is the 

real part of the complex coefficient an-k and Im(an-k) is the imaginary part, such that an-k = Re(an-k) 

+ i Im(an-k)  . For convenience, we can call the first component of the vector value the real 

component, and the second component we call the imaginary component. The directions given 

by the vector value obtained using equation (2), follow the same rules we established for 

equation (1).  

 To make matters more concrete, we can represent the 2nd degree polynomial 

P(z)=z2+z+(1-i). Thus we have a2=1, a1=1 and a0=1-i. The vector 𝑃0𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   corresponding to a2=1 is 

given by Re(1)ei(0)π/2 + Im(1)ei(0+1)π/2=e0+0=1. If we let P0 to be at (0,0), then P1 is one unit to the 

right of P0 at (1,0). Now P1 is the initial point for the vector 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   that corresponds to a1=1. 

Similarly, the direction of vector 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is given by Re(1)ei(1)π/2 + Im(1)ei(1+1)π/2= eiπ/2+0=i.Thus P2 

is one unit up with respect to P1, at the coordinates (1,1). Finally, we obtain the vector 𝑃2𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  that 

corresponds to the coefficient a0=1-i and is given by Re(1-i)ei(2)π/2 + Im(1-i)ei(2+1)π/2=eiπ +            

(-1)e3iπ/2= -1 + (-1) (-i)= -1 + i. Thus, P3 is one unit to the left and one unit up with respect to P2, 

at the coordinates (0,2). The Lill representation of the polynomial P(z) is shown in Figure 2.  



 

Figure 2 

 In the previous section we discussed the fact that two consecutive vectors 𝑃𝑘−1𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and 

𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ are usually at a 90-degree angle rotation with respect to each other when they represent 

two coefficients that are real. In this case a2 and a1 are real coefficients, so 𝑃0𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  are at a 

90-degree angle rotation with respect to each other. However, a0 is a complex number with a real 

and an imaginary component, so the angle rotation between the vectors 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑃2𝑃3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is no 

longer 90 degrees. 

 We can also devise a few rules of thumb for the complex coefficients. If the real part of 

an-k has the same sign as the imaginary part of an-k, then the component of 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ that represents 



the imaginary part of an-k is 90 degrees counterclockwise with respect to the component that 

represents the real part. If the signs are different, then the angle is 90 degrees clockwise. In the 

case of a0 = 1 - i , the signs are different. Using equation (2), we saw that the real part has a value 

of -1 and the imaginary part has a value of i. The component of 𝑃2𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   that represents the real part 

of a0 points towards the left, while the component that represents the imaginary part of a0 points 

up (the location of P3 was one unit to the left and one unit up with respect to P2).  Thus, the 

component of 𝑃2𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   that represents the imaginary part is 90 degrees clockwise with respect to the 

component that represents the real part.   

 The rules of thumb presented in this section can be combined with the rules presented in 

the previous section to estimate the direction of each vector 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  without the need of 

equations (1) and (2).  

Graphing Solutions  

In the general case when z is not necessarily a root of the polynomial P(z), the Lill path 

of variable z is given by P0A1A2…An-1An, such that the triangles P0P1A1, A1P2A2, A2P3A3, …, 

An-2Pn-1An-1 and An-1PnAn are similar and the angles m(P1P0A1)=m(P2A1A2)=…=m(PnAn-1An)= θ, 

where θ is the associated angle of z and -180 ≤ θ ≤ 180. The associated angle θ is positive if 

𝑃0𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is counterclockwise with respect to 𝑃0𝑃1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    .  The variable z is a root only when An is the 

same point as Pn+1. We can adapt some formulas from paper [3], to obtain the exact location of 

the points A1, A2,… and An. Thus, taking the vector 𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  corresponding to an-k as our 

reference, we get: 

           𝐴𝑘𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents Hk,k (z) =  anz

k + an-1z
k-1 +…+ an-k+1z with respect to 𝑃𝑘𝑃𝑘+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗         (3) 

and 

𝐴𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents Hk,k+1 (z) =  anz

k + an-1z
k-1 +…+an-k+1z+an-k with respect to 𝑃𝑘𝑃𝑘+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (4)                                                                                                                                



So, we obtain these useful equations: 

𝐴1𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  represents H1,1 (z) = anz, with respect to 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                                            (5) 

and 

   𝐴𝑛𝑃𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    represents Hn,n+1 (z) =  anz

n+an-1z
n-1+…+a1z+a0=P(z), with respect to 𝑃𝑛𝑃𝑛+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   (6)  

  

 𝐴𝑘𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗and 𝐴𝑘𝑃𝑘+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are vectors that have the initial point Ak. Using equation (3), the length 

of vector 𝐴𝑘𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ should be given by the absolute value of the polynomial Hk,k (z).  When we 

define the direction of  𝐴𝑘𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ with respect to 𝑃𝑘𝑃𝑘+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , we mean  that both vectors have the same 

frame of reference for their real and imaginary components. For example, using equation (2) we 

know that the real component of 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is always parallel to the y-axis and that the positive 

direction is the direction that points up. The imaginary component of 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   should be parallel to 

the x-axis and the positive direction is the direction that points to the left. From equations (3)-(4), 

we know that 𝐴1𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝐴1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ should have the same frame of reference as 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Since 𝐴𝑘𝑃𝑘

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

𝑃𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  have the same frame of reference, we can modify equation (2) to obtain the following 

equation for the vector value of 𝐴𝑘𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ : 

Re(Hk,k (z))ei(k)π/2 + Im(Hk,k (z))ei(k+1)π/2, where 1≤ 𝑘 ≤ 𝑛 and i is the imaginary number (7) 

 Formula (7) also gives the direction for 𝐴𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   if we replace Hk,k (z) with Hk,k+1 (z). 

Since the location of Pk or Pk+1 is already known, it is usually easier to determine the location of 

Ak using the vector values of vectors 𝑃𝑘𝐴𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ or 𝑃𝑘+1𝐴𝑘

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , which are the opposite of 𝐴𝑘𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 

𝐴𝑘𝑃𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  The vector value of 𝑃𝑘𝐴𝑘

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is obtained by multiplying the vector value of 𝐴𝑘𝑃𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ by -1.  

 To make the matters more concrete, we can graph the solution path of our polynomial 

P(z)=z2+z+(1-i), that was represented in the Figure 2. P(z) can be factored as (z-i)(z+(1+i)), so 

z1=i and z2=−1−i. For convenience, Figure 3 shows the path for both roots. The path for z1=i is 



given by P0A1P3 (the path has blue segments in Figure 3), where A1 has the coordinates (2,0).  

𝐴1𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents H1,1 (i) = a2 i = i with respect to 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Using formula (7), the direction of 𝐴1𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is 

given by Re(i)ei(1)π/2 + Im(i)ei(1+1)π/2= 0 + (1) eiπ= -1. Thus, P1 should be one unit to the left of A1. 

Formula (7) gave us the right direction, since A1 is at (2,0) and P1 is at (1,0). As mentioned in the 

previous paragraph, it is also useful to think about the vector value of vector 𝑃1𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, which has the 

opposite direction of 𝐴1𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  The vector value of 𝑃1𝐴1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is equal to the vector value of 𝐴1𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

multiplied by -1. In our example, the vector value of 𝑃1𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is (-1)(-1)=1, so the vector points one 

unit to the right. So, we know that the point A1 is one unit to the right of P1. This approach is 

useful when we don’t have the path of variable z plotted as we have in Figure 3. Once we have 

the Lill representation of the polynomial, as in Figure 2, we can use this approach to plot each 

point Ak. As we mentioned in the previous paragraph, this method is convenient since we already 

know the location of each point Pk, so it should be easy to determine the location of Ak once we 

know the vector value of 𝑃𝑘𝐴𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  

 𝐴1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents H1,2 (i) = a2 i + a1 = i +1 with respect to P1P2. The vector value of 𝐴1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is 

given Re(i +1)ei(1)π/2 + Im(i + 1)ei(1+1)π/2 = eiπ/2 + eiπ = i -1.  Thus, the vector points one unit up 

and one unit to the left. This is correct since A1 is at (2,0) and P2 is at (1,1). Since z1 is a root, we 

know that A2 = P3. 𝐴2𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents H2,2 (i) = a2 (i)

2 + a1(i) = -1 + i. To determine the vector value 

of 𝐴2𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ we can use equation (7), or we can use the fact that 𝐴2𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑃3𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . In the previous section 

we determined that the vector value of 𝑃2𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is -1 + i. Since 𝑃3𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   goes in the opposite direction, 

its vector value is 1 -i.  This is correct, since P3 is at (0,2) and P2 is at (1,1). Finally, 𝐴2𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑃3𝑃3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

and it represents P(i)=0. 

 The path for z2 = -1 – i is given by the green path P0B1P3, where B1 has the coordinates 

(0,1). We let the reader check if the path matches with the equations (3)-(7).  



 

 

Figure 3 

 To check the correctness of our paths, we can also use the geometrical properties 

mentioned at the beginning of this section. We mentioned that each z has an associated angle θ.  

For z1 we have the associated angle θ1 = m(P1P0A1) = m(P2A1P3) = 0. We also mentioned that the 

triangles P0P1A1 and A1P2P3 should be similar. Since θ1 = 0, the two triangles are degenerate 

triangles with collinear vertex points. Nonetheless, it can be checked that the sides of the two 

degenerate triangles are proportional and that indeed the two triangles are similar. The associated 

angle of z2 is θ2 = m(P1P0B1) = m(P2B1P3) = 90 (P0B1 is 90 degrees counterclockwise with 



respect to P0P1), so we get the right triangles P0P1B1 and B1P2P3. The case of z2 is much easier 

since the two triangles are identical.  

 Before we finish this section, we should make a few comments about the polynomials 

Hk,k (z) and Hk,k+1 (z). The two polynomials can be compared to Horner’s method for evaluating 

polynomials. In fact, we can say that the Lill path of z is a graphic representation of Horner’s 

method. For convenience we can refer to the polynomials Hk,k (z) and Hk,k+1 (z) as Horner’s 

companion polynomials. 

 

General Properties  

 In paper [4] it is shown that the path for a root zr given by P0A1A2…An-1Pn+1 describes a 

polynomial of order n-1 that has the same roots as 
P(z)

(z−𝑧𝑟) 
  .The polynomial P(z)/(z-zr) is a 

polynomial of degree n-1 that will have the same roots as P(z), not counting zr. For example, in 

Figure 3 the path P0A1P3 describes the polynomial P1(z)= 2z + (2+2i). The only root of P1(z) is 

zr=−1 −i, which is equal to z2. The polynomial P1(z) has the same root as P(z)/(z-z1)   The path 

P0B1P3 describes the polynomial P2(z)= iz + 1. The only root of P2(z) is zr=i, which is equal to z1. 

Again, P2(z) has the same root as P(z)/(z-z2). Thus, due to this deflationary property the degree 

of the polynomial P(z) can be reduced each time we find a new root.  From our examples, we can 

see that this property also works for polynomials with complex coefficients.  

 In paper [5] it is shown that polynomials divisible by z2+1 have a closed Lill path. A 

closed Lill path is a Lill path where P0 coincides with Pn+1. For example, the polynomials z2 + 1 

and z3 + z2 + z +1 have a closed Lill path.  In the most general case, it can be observed that a 

polynomial P(z) has a closed Lill path if and only if P(z) is divisible by (z+i). z2+1 can be 

factored as (z + i)(z - i) and the paper [5] only considers polynomials with real coefficients. Due 



to the complex conjugate root theorem, if a polynomial P(z) with real coefficients has -i as a root 

it will also have i as a root. However, a polynomial with complex coefficients doesn’t necessarily 

have pairs of complex conjugate roots.  The simplest case of a polynomial with closed Lill path 

is P(z) = z + i, that has the root zr = -i. Thus, in the most general case, the Lill path of a 

polynomial P(z) with complex coefficients is closed only if z = -i is a root of P(z).  This anomaly 

is derived from the fact that the path of z = -i is always stationary. Thus, for z = -i, P0 = A1 = A2 

= … = An  and if z= -i is a root, then An = Pn+1. Also, the associated angle of z = -i is undefined 

since m(P1P0A1) cannot be defined. Due to the anomaly at z = -i, a polynomial with a closed Lill 

path cannot be reduced to a lower degree polynomial using the stationary path of z = -i. Thus, the 

deflationary property doesn’t work for zr = -i.  

 Another observable general property for Lill graphs involves the associated angles of the 

roots of a polynomial. We can consider the general polynomial of order n P(z)=anz
n+an-1z

n-

1+…+a1z+a0, with the roots z1,z2,...,zn. Each of these n roots has an associated angle θ1,θ2,…,θn. 

It can be observed that m(P1P0Pn+1)= θ1 + θ2 +… θn.. To our knowledge, this sum of angles 

property is not discussed in other papers that deal with Lill’s method. Thus, there is no proof for 

this property. We can see that the property works for the polynomial discussed in the previous 

section since m(P1P0P3) = θ1 + θ2 = 0 + 90 = 90. From paper [2], we know that when the 

polynomial has only real coefficients and z is a real number, then z = - tan (θ).  Using the 

trigonometric equation from [2] and Vieta’s formulas, it is not hard to prove that tan( P1P0Pn+1) = 

tan(  θ1 + θ2 +… θn) when P(z) is a polynomial with real coefficients and n real roots. When all 

roots are real we can obtain an equation for tan(  θ1 + θ2 +… θn) that is similar to the sum of 

angles formula presented in paper [6].  The situation becomes more difficult when we are dealing 

with complex roots and especially when we are dealing with polynomials with complex roots. 



Also, it should be obvious that the sum of angles property doesn’t work if the polynomial has a 

closed Lill path. In a closed Lill path P0 = Pn+1, so m(P1P0Pn+1) is undefined. Nonetheless, the 

sum of angles property is an interesting property that in a way it seems to complement Vieta’s 

formulas. While Vieta’s formulas are algebraic, the sum of angles property is geometric or 

trigonometric in nature. Since we will not attempt to prove the sums of angles property in this 

paper, we will leave it as a conjecture.  

 There are other general properties related to the Lill graphs of polynomial equations. In 

paper [4] it is shown that Lill’s method can be used to calculate the derivative of a polynomial at 

a specific z. In fact, the paper shows that for a nth order polynomial, you can calculate the nth 

order derivative for a specific z. The paper also discusses a few additional properties, however 

we prefer to let the readers explore these properties on their own. 

Final Notes 

 In this paper we showed that Lill’s method can be extended to represent polynomial 

equations with complex coefficients. We also discussed a few general properties that are very 

important when dealing with Lill’s method and we also introduced new terminology. By 

extending the Lill’s method, we also gained a better understanding of the mechanics behind this 

method.  

 We hope that the general properties discussed in this paper show that Lill’s method 

enhances our understanding of the geometry of polynomials. We already mentioned that the sum 

of angles property is an interesting geometric or trigonometric property that complements 

Vieta’s formulas. The deflationary property seems to be a graphic representation of the 

polynomial remainder theorem.  We already mentioned that the Lill path for z is a geometric 

representation of Horner’s method. In fact, many aspects of Lill’s method seem to be the 



geometric equivalent of various algebraic or arithmetic methods, techniques or theorems. There 

are probably many other undiscovered properties that may prove to be useful for our 

understanding of polynomial equations.  

 The usefulness of Lill’s method goes beyond the properties discussed in this paper. For 

example, there are certain techniques that can be used to solve quadratic equations. In paper [7], 

the author mentions a method to solve quadratics with real roots and a method to solve 

quadratics with complex roots. Maybe in the future somebody will discover similar techniques to 

deal with quadratics with complex roots.  Paper [8] shows the relationship between Lill’s method 

and origami techniques to solve cubic equations.   

 In the future, Lill’s method may prove to be a useful educational tool. The beauty of 

Lill’s method is that it shows that geometry, calculus, trigonometry, algebra and arithmetic are 

connected mathematical fields. Lill’s method can be used to educate students to see mathematics 

as a more unified body of knowledge. The techniques and formulas presented in [2], [7] and [8] 

should be a good starting point for finding a way to implement Lill’s method in an educational 

setting. To make Lill’s method easier to understand, some formulas like equation (1) should be 

replaced by the rules of thumb presented in this paper. There are other changes that can be done 

to make Lill’s method a more useful educational tool. Lill’s method is a flexible method. Lill’s 

method should also work well with geometric software like GeoGebra, so it can make the 

teaching experience more interactive.  

  Lill’s method was discovered more than 150 years ago, but it is still an obscure or 

relatively obscure method. We hope that this paper showed that Lill’s method deserves to be 

known by a larger audience. This method can be used to see many geometric properties of 



polynomial equations and we also believe that it has the potential to be used as an effective 

educational tool.  
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