NOTE ON THE REPRESENTATION OF THE VALUES OF POLYNOMIALS WITH REAL COEFFICIENTS FOR COMPLEX VALUES OF THE VARIABLE

 \mathbf{BY}

B. MEULENBELD

(Communicated by Prof. J. G. VAN DER CORPUT at the meeting of May 20, 1950)

§ 1.

In a previous paper [1] an extension was given of Lill's method, in which a polynomial with real coefficients was represented by polygon-parts with angle φ . According to that, the value of the polynomial f(z) can be determined graphically for each real value of z. For $\varphi = \pi/2$ we obtain the orthogones, which Lill used in resolving the real roots of a numerical equation. He also indicated [2] a method (without proof) to resolve graphically the complex roots of a numerical equation.

In the present note it is shown how this latter method can be extended to that of the polygonparts with angle φ , and how the values of a polynomial f(z) for complex z can be represented.

§ 2.

We consider a polynomial of degree n

(1)
$$f(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n \qquad (a_0 \neq 0),$$

where a_i (i = 0, 1, ..., n) are real numbers.

We construct the polygonpart with angle φ of f(z). As the directions of the a_i -sides are very important, it will be useful to give the rule for the construction of the polygonpart here again, but in another form. Each pair of consecutive sides include a fixed angle φ . The positive direction of the a_{i+1} side is obtained by a rotation of the positive a_i -direction in the point of intersection over an angle φ in the positive sense (that is counterclockwise). The positive a_0 -direction is arbitrary. The a_{i+1} -side is drawn in the positive or negative direction according to the sign of the coefficient a_{i+1} .

(In fig. 1 the polynomial $f(z)=z^4-2z^3-z^2+3z-2$ is represented by the polygon part $P_0P_1P_2P_3P_4P_5$).

Let the polygonpart with angle φ $P_0P_1P_2\dots P_{n+1}$ (in fig. 1 with n=4) represent the polynomial (1).

Without loss of generality we again may assume $a_0 > 0$.

If A_1 is an arbitrarily chosen point, then we consider $\overrightarrow{P_1}A_1$ as a complex

vector with respect to P_1 as origin, and with the positive a_1 -direction as positive axis of reals (shortly: with respect to the a_1 -side).

In fig. 1 is
$$a_1 < 0$$
, so $\overrightarrow{P_1 A_1} = \overrightarrow{P_1 B_1} + i \overrightarrow{B_1 A_1}^1$), and $\overrightarrow{A_1 P_1} = -\overrightarrow{P_1 B_1} - i \overrightarrow{B_1 A_1}$.

Now we put

$$(2) \qquad \overrightarrow{A_1 P_1} = z \ a_0.$$

With each vector $\overrightarrow{A_1P_1}$ a complex number z corresponds, and conversely with each complex number z a vector $\overrightarrow{A_1P_1}$ with (2) can be found.

We construct the points A_2, A_3, \ldots, A_n , such that the triangles $P_0P_1A_1, A_1P_2A_2, A_2P_3A_3, \ldots, A_{n-1}P_nA_n$ are conformable.

We shall prove that the vector $\overrightarrow{A_nP_{n+1}}$ represents the value of the polynomial f(z) with respect to the a_n -side.

Proof. With respect to the a_1 -side:

$$arg^{2}$$
) $z = arg \overrightarrow{A_{1}P_{1}} = \angle A_{1}P_{1}P_{2} = a, |\overrightarrow{A_{1}P_{1}}| = a_{0}|z|.$

Hence

$$\overrightarrow{A_1P_2} = a_1 + a_0z.$$

$$\overrightarrow{A_1P_2} = \angle A_1P_2P_1 - \pi = \psi_1 - \pi.$$

¹⁾ We remark that $\overrightarrow{XY} = -\overrightarrow{YX}$, and that $\overline{XY} = -\overrightarrow{YX}$.

²⁾ With arg z we mean here the main argument of z.

With respect to the a2-side:

$$\arg \overrightarrow{A_2P_2} = \psi_1 - \pi - \alpha = \arg z(a_1 + a_0 z), \ |\overrightarrow{A_2P_2}| = |z| \ |a_1 + a_0 z|.$$

Hence

$$\overrightarrow{A_2P_2}=z~(a_1+a_0z),~ ext{and}~\overrightarrow{A_3P_3}=a_2+a_1z+a_0z^2.$$
 arg $\overrightarrow{A_2P_3}=\pi-\angle A_2P_3P_2=\pi-\psi_2.$

With respect to the a_3 -side:

$$rg \stackrel{
ightarrow}{A_3 P_3} = \pi - \psi_2 - a = rg z \ (a_2 + a_1 z + a_0 z^2),$$
 $|A_3 \stackrel{
ightarrow}{P_3}| = |z| \ |a_2 + a_1 z + a_0 z^2|.$

Hence

$$\overrightarrow{A_3P_3} = a_2z + a_1z^2 + a_0z^3$$
, and $\overrightarrow{A_3P_4} = a_3 + a_2z + a_1z^2 + a_0z^3$.

Proceeding this process we find with respect to the a_n -side:

$$\arg \overrightarrow{A_n} P_n = \arg z (a_{n-1} + a_{n-1} z + \dots + a_0 z^{n-1}),$$
$$|\overrightarrow{A_n} P_n| = |z (a_{n-1} + a_{n-2} z + \dots + a_0 z^{n-1})|.$$

Hence

$$\overrightarrow{A_nP_n} = z(a_{n-1} + a_{n-2}z + ... + a_0z^{n-1})$$

and

$$\overrightarrow{A_nP_{n+1}} = a_n + a_{n-1} z + a_{n-2} z^2 + \dots + a_0 z^n = f(z).$$

In fig. 1 is
$$\overrightarrow{A_1P_1} = z = \frac{1}{2} - i$$
 and $\overrightarrow{A_4P_5} = f(\frac{1}{2} - i) = 2\frac{9}{16} - i$.

Remarks.

- 1. If the point A_1 (and so z) can be chosen such that $\overrightarrow{A_nP_{n+1}} = 0$, which means that the point A_n coincides with P_{n+1} , then z is found to be a root of the equation f(z) = 0.
- 2. It is obvious that with a point A'_1 , lying symmetrically to A_1 with respect to the a_1 -side a point A'_n corresponds, symmetrically to A_n with respect to the a_n -side (in fig. 1 the point A'_4). So $\overrightarrow{A'_nP_{n+1}}$ represents the value $f(\overline{z})$, where \overline{z} is the conjugate of z. This illustrates again the correctness of the wellknown theorem: If f(z) is a polynomial with real coefficients, and z is a root of the equation f(z) = 0, then \overline{z} is also a root.

Bandung, May 1950.

University of Indonesia.

LITERATURE

- MEULENBELD, B., Note on LILL's method of solution of numerical equations. Proc. Kon. Ned. Akad. v. Wetensch. 53, 464 (1950).
- Lill, M., Résolution graphique des équations algebriques, qui ont des racines imaginaires. Nouv. Ann. Math. 2, 7 (1868).