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Abstract 

 In this paper we will show that the polynomial equations with real roots have a special 

property when they are represented using the graphic method called Lill’s method. This special 

property will allow us to construct graphically the sum of arctangents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Introduction 

 Lill’s method is a remarkable visual method that can be used to represent and solve 

graphically polynomial equations with real coefficients. In this paper, we will concentrate on 

polynomial equations that have only real roots. We will show that the polynomial equations with 

real roots have a useful property when they are graphed using Lill’s method. This property will 

allow us to obtain graphically the sum of arctangents by constructing a corresponding 

polynomial using Lill’s method.  

Lill’s method 

 Let’s have the general polynomial of order n, P(x)=anx
n+an-1x

n-1+…+a1x+a0, where the 

coefficients {an, an-1, … , a1, a0} are real numbers.  In Lill’s method, these 𝑛 + 1 coefficients are 

represented by 𝑛 + 1 “reflective” and perpendicular segments that are connected in a link or 

path, and each segment will have its length equal to the absolute value of the corresponding 

coefficient. The path starts with the segment P0P1 corresponding to an, then the segment 

corresponding to an-1 or P1P2, is constructed such that P1P2 is perpendicular to P0P1. The process is 

repeated until the segment corresponding to a0 is constructed. Each of these n “reflective” 

segments must also be extended (at infinity) in both directions by “refractive” or dotted lines. 

Also each of these segments must have a direction, and I will use the following formula for 

length and direction of a segment: ake
i(n-k)π/2, where ak is the coefficient corresponding to the 

segment, i is the imaginary number and 0≤ 𝑘 ≤ 𝑛. 

 In order to understand Lill’s representation of a polynomial, we can graph the polynomial 

P(x)= x4 + 2x3 +3x2 + x +1, with a4=1, a3=2, a2=3, a1=1, a1=1. The segment corresponding to the 

coefficient a4=1 is P0P1. Using the direction formula we get 1ei(4-4)π/2=e0=1. So, if we consider P0 

to be the point of origin, P1 is one unit to the right of P0. The segment corresponding to the 

coefficient a3=2 is P1P2, with the direction 2ei(4-3)π/2=2eiπ/2=2i. Therefore, P2 is 2 units up from P1. 

Now P2 becomes the starting point of the segment corresponding to a2. The direction formula 

gives -3 for the segment P2P3 corresponding to a2. We also get -i for P3P4 corresponding to a1=1 

and 1 for P4P5 corresponding to a0=1. The graphical representation of the polynomial can be seen 

in Figure 1, where P0 is the origins of the coordinate system. Looking at Figure 1, we can make a 

few additional observations. If the coefficients ak and ak-1 have the same sign, the segment 

corresponding to ak-1 is 90 degrees counterclockwise in relation to the segment corresponding to 

ak. If the coefficients ak and ak-1 have different signs, the segment corresponding to ak-1 is 90 

degrees clockwise in relation to the segment corresponding to ak. A more important observation 

for this paper is that when the coefficients ak and ak-2 have the same sign, the segments 



corresponding to the ak and ak-2 go in opposite directions. For example, in Figure 1 the segment 

corresponding to a3=2 is P1P2, which goes up since P1 is the starting point of the segment. The 

segment corresponding to a1=1 is P3P4, which goes down since P3 is the starting point. The same 

can be said about the segments corresponding to a4 and a2, or a2 and a0.  

 

Figure 1 

 

 

 In order to obtain a solution for a Lill representation, we must find a path made of 

𝑛 perpendicular segments that starts at P0 and ends at Pn+1. For example, let’s have the 

polynomial P(x)=x2+2x+1, with a2=1, a1=2 and a0=1. The root of this polynomial is xr= −1, with 

the multiplicity 2. Figure 2 displays the solution. The solution path is created by the segment 

P0A1 and the segment A1P3. The general rule is to start from P0 by creating a segment P0A1 that 

intersects the segment corresponding to the coefficient an-1 or the dotted line extension of an-1. 

The segment P0A1 makes an angle θ with the segment corresponding to an or P0P1. From A1 you 

create another segment that makes an angle θ with the segment corresponding to an-1, and the 

new segment should intersect the segment corresponding to the coefficient an-2 or its extension. 

The process is repeated until you get the segment An-1Pn+1. In Figure 2 we can see that 2 

successive segments from the solution path are always perpendicular. Thus, the segment A1P3 is 



perpendicular to the segment P0A1. The numerical solution is given by the formula xr= 

−tan(θ)=A1P1/P0P1. In our example xr= −1 and θ=45 degrees. So, the angle θ is positive if it is 

counterclockwise with respect to P0P1, and negative if it is clockwise. 

 

 

 

Figure 2 

 

 To get a better grasp of Lill’s method, let’s consider the polynomial P(x)= x2-x-1, with 

a2=1, a1=−1 and a0=−1. One of the solutions is the golden number xr=φ~ 1.618. Figure 3 shows 

the solution path. Figure 2 shows a solution path that involved “reflection”, while Figure 3 shows 

a solution path that involves “refraction”. We see that the segment P0A1 intersects the dotted 

extension of P1P2. In Figure 2, the segments P0A1 and A1P3 are on the left side of P1P2. In figure 



3 we see that the segment A1P3 crossed to the right side of P1P2. If a solution segment intersects a 

dotted extension, the next solution segment always goes beyond the dotted extension. We should 

also observe that the angle θ =m(P1P0A1) should be negative since it is clockwise with respects to 

P0P1. So θ~ −58.28253. In Figure 3, we again observe that 2 consecutive segments that belong 

to the solution path are perpendicular since A1P3 is perpendicular to the segment P0A1. The last 

observation we can make is the fact that we ignored the intersection of the segment P0A1 with the 

dotted extension of P2P3. If a solution segment goes from the segment corresponding to ak (or its 

dotted extension) to the segment corresponding to ak-1 (or its dotted extension), the segments 

corresponding to other coefficients (and their dotted extensions) can be ignored.   

 

Figure 3 

Vieta’s Formulas 

 Vieta’s formulas are very useful since they relate the coefficients of a polynomial to sums 

and products of its roots. Any general polynomial of order n, P(x)=anx
n+an-1x

n-1+…+a1x+a0, has 

n roots x1,x2,...,xn. Vieta’s formulas give the following relations: 

x1 + x2 + ...+ xn-1+ xn= − 
𝑎𝑛−1

𝑎𝑛
     

(x1x2 + x1x3 + … +x1xn) + (x2x3 + x2x4 + … +x2xn) + … + xn-1xn= 
𝑎𝑛−2

𝑎𝑛
     

⋮ 



x1x2…xn-1xn= (−1)n 
𝑎0

𝑎𝑛
     

 We can replace a root xk by – tan (θk), where θk is the angle in a Lill diagram that gives a 

solution. However, xk must be a real solution in order to have a corresponding angle θk such that 

xk= – tan (θk). If xk is complex, Lill’s solution is not given by a corresponding – tan (θk) 

anymore. In the next sections, we will focus on polynomials that have only real roots. 

Lill’s Tangent of Sums Property 

 Let’s have a general polynomial of order 𝑛, P(x)=xn+an-1x
n-1+…+a1x+a0, that has only the 

real roots x1,x2,...,xn. Each of these n roots has a corresponding angle θ1,θ2,…,θn such that 

x1=−tan(θ1), x2=−tan(θ2),…, xn=−tan(θn). We also let the segment Pn-kPn-k+1 be the Lill 

representation of the coefficient ak. Then 

tan( P1P0Pn+1)= tan(θ1 + θ2 +… θn) 

Proof: We should remember that P1P0 is the segment corresponding to an, which is the first 

segment we draw using Lill’s method. Pn+1 is the terminus of the segment corresponding to a0, 

and it is the last point drawn in a Lill representation of a polynomial. We also used the formula 

ake
i(n-k)π/2 to give the direction to the segment corresponding to ak, which is Pn-kPn-k+1. The 

formula gives a real number when Pn-kPn-k+1 is horizontal, and a complex number when Pn-kPn-k+1 

is vertical. The tangent formula is 
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
, so we will add the vertical coefficient in the numerator 

and the horizontal coefficients in the denominator. The direction formula cannot be used directly 

since the numerator would be complex and the denominator would be real. Instead we can use 

the observation made in a previous section where we stated that when the coefficients ak and ak-2 

have the same sign, the segments corresponding to the ak and ak-2 go in opposite directions. 

Using the observations mentioned we can write the following: 

tan( P1P0Pn+1)=
𝑎𝑛−1−𝑎𝑛−3+𝑎𝑛−5−⋯

𝑎𝑛−𝑎𝑛−2+𝑎𝑛−4−⋯
= 

𝑎𝑛−1−𝑎𝑛−3+𝑎𝑛−5−⋯

1−𝑎𝑛−2+𝑎𝑛−4−⋯
 

This tangent equation can be compared to an equivalent tangent of sums equation from this paper 

[1].  But to make things a little bit simpler we can look at a 2nd degree polynomial 

P(x)=x2+a1x+a0, with the real roots x1 and x2. Then  

  tan( P1P0P3) = 
𝑎1

1−𝑎0
 

              by Vieta’s formulas  = 
−[− tan(θ1)−tan (θ2)]

1−[− tan(θ1)][− tan(θ2)]
 

    =
tan(θ1)+tan (θ2)]

1−[tan(θ1)tan (θ2)]
 

    =tan(θ1 + θ2) 



 We can point out that we chose an=1 for convenience. If an is not equal to 1, we can 

always divide the polynomial by an to make the coefficient of xn equal 1, and the new polynomial 

would have the same exact roots. We can also see that in Vieta’s formulas, an divides the other 

coefficients. Thus, our formulas would yield the same results since an would be a common factor 

to all the terms in our equation. 

 

Applications 

 A corollary of the tangent of sums property is the sum of angles property, which is 

m(P1P0Pn+1)= θ1 + θ2 +… θn. Since we deal with angles between -90 degrees and 90 degrees, 

maybe we can find an application that deals with sum of arctangents. For example, we can use 

this Lill property to construct graphically an angle that is the sum of 2 or more arctangents.   

 One well know identity is arctan(1) + arctan(2) + arctan(3)=180 degrees. We know that if 

θ=arctan(x), then x=tan(θ). To construct the sum of arctangents graphically, we can make a 

corresponding polynomial that has the roots xk=tan(θk). In Lill’s method the roots are -tan(θ), but 

we can deal with that later. So using our specific example we can have the polynomial with roots 

x1=1, x2=2 and x3=3. We can use Vieta’s formula to obtain the polynomial or we can expand (x-

1)(x-2)(x-3)= x3-6x2+11x-6. So a3=1, a2=−6,a1=11 and a0=−6. Figure 4 shows the Lill 

representation of this polynomial. In Lill’s method the solution angles are θ1=−45, θ2≈ −63.43 

and θ3≈ −71.56. Thus m(P1P0P4)=−180. We obtained the negative sign because we let 

xk=tan(θk) instead of xk=−tan(θk). We could have used x1=−1, x2=−2 and x3=−3 to obtain 

positive angles.  



 

Figure 4 

 This method is probably best used when you have to add 2 or 3 arctangents.  The 

corresponding polynomial becomes more complex as the sum has more terms. This method can 

be also adapted to find the tangent of sum of angles, if the tangent of individual angles is known. 

 

Final Notes 

 Lill’s method has many additional application that were not covered in this paper. For 

example, you can construct certain circles in order to obtain the solutions to quadratic equations, 

even if the solutions are complex. To learn more about Lill’s method we recommend papers [2] 

and [3]. 

 The sum of angle property is another interesting aspect of Lill’s diagrams since it shows 

how various branches of mathematics are connected. It shows how trigonometric identities like 

tangent of sums are connected to polynomial equations that have real roots. The sum of angles 

property seems to hold even when the polynomials have complex roots. Proving that the sum of 

angles property holds when the polynomial has complex roots (or complex and real roots) can be 

the subject of another paper. 
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